Solution algorithms for quadratic optimization problems with not necessarily convex objective function
نویسندگان
چکیده
منابع مشابه
An Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function
In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...
متن کاملAlgorithms for Optimal Allocation Problems Ha Ving Quadratic Objective Function
In this paper, an optimal allocation problem (APQ) with a quadratic objective function, a total resource constraint and an upper and lower bound constraint is considered. The APQ is a very basic and simple model but it can serve as a sub problem in the solution of the generalized allocation problem. Applying the Lagrange relaxation method, an explicit expression of the dual function associated ...
متن کاملan interior point algorithm for solving convex quadratic semidefinite optimization problems using a new kernel function
in this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual interior point method (ipm) based on a new kernel function with a trigonometric barrier term. iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. although our proposed kernel function is neither a self-regular (sr) function nor logarithmic barrier ...
متن کاملA Semidefinite Optimization Approach to Quadratic Fractional Optimization with a Strictly Convex Quadratic Constraint
In this paper we consider a fractional optimization problem that minimizes the ratio of two quadratic functions subject to a strictly convex quadratic constraint. First using the extension of Charnes-Cooper transformation, an equivalent homogenized quadratic reformulation of the problem is given. Then we show that under certain assumptions, it can be solved to global optimality using semidefini...
متن کاملFully Distributed Algorithms for Convex Optimization Problems
We design and analyze a fully distributed algorithm for convex constrained optimization in networks without any consistent naming infrastructure. The algorithm produces an approximately feasible and near-optimal solution in time polynomial in the network size, the inverse of the permitted error, and a measure of curvature variation in the dual optimization problem. It blends, in a novel way, go...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applications of Mathematics
سال: 1974
ISSN: 0862-7940,1572-9109
DOI: 10.21136/am.1974.103532